In a real-world network confrontation process, attack and defense actions change rapidly and continuously. +e network environment is complex and dynamically random. +erefore, attack and defense strategies are inevitably subject to random disturbances during their execution, and the transition of the network security state is affected accordingly. In this paper, we construct a network security state transition model by referring to the epidemic evolution process, use Gaussian noise to describe random effects during the strategy execution, and introduce a random disturbance intensity factor to describe the degree of random effects. On this basis, we establish an attack-defense stochastic differential game model, propose a saddle point equilibrium solution method, and provide an algorithm to select the optimal defense strategy. Our method achieves real-time defense decision-making in network attack-defense scenarios with random disturbances and has better real-time performance and practicality than current methods. Results of a simulation experiment show that our model and algorithm are effective and feasible.
Loading....